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Abstract
Linear irreversible thermodynamics asserts that the instantaneous local spontaneous entropy

production is always nonnegative. However for a viscoelastic �uid this is not always the case. Given

the fundamental status of the Second Law, this presents a problem. We provide a new derivation

of the Second Law, from �rst principles, which is valid for the appropriately time averaged entropy

production allowing the instantaneous entropy production to be negative for short intervals of

time. We show that time averages (rather than instantaneous values) of the entropy production

are nonnegative. We illustrate this using molecular dynamics simulations of oscillatory shear.
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Linear irreversible thermodynamics asserts that close to equilibrium, the spontaneous
entropy production per unit time, per unit volume, the so-called entropy source strength
σ(r, t), cannot be negative [1, 2]. Further it states that the entropy source strength is a sum
of products of irreversible thermodynamic �uxes Ji and forces Xi,

σ(r, t) =
∑

Ji(r, t)Xi(r, t) ≥ 0 (1)

where the source strength is calculated at a position r and a time t. For steady state processes
close to equilibrium Eq. 1 is clearly correct. However, for processes that involve time
dependent or oscillatory thermodynamic forces, in viscoelastic materials close to equilibrium,
Eq. 1 is incorrect. These problems are usually resolved by separating the �uxes into �storage
and loss� components [3]. Such a separation is not derived from �rst principles and is
process speci�c. A second problem with Eq. 1 is that it is restricted to the near equilibrium,
linear response, regime. Further from equilibrium the de�nition of entropy and therefore
temperature remains an unsolved problem [4]. Until very recently there has been no known
generalization of Eq. 1 to the far from equilibrium regime.

Recent advances, which are of broad interest [5, 6], have cast new light on these issues.
In particular we will use the Jarzynski Equality (JE) [7, 8] to derive a variation on Eq. 1
from �rst principles. In order to proceed we �rst de�ne the conjugate �ux J, for a system
which is driven away from equilibrium by a dissipative �eld Fe, in terms of the rate that
work is done on the system [9],

JV · Fe (t) = −kBTΩ (t) ≡ kBTΛ (Γ (t))− d

dt
H0 (Γ (t)) . (2)

Here V is the system volume, kB is Boltzmann's constant, T is the temperature of the
synthetic thermostat or a large heat reservoir [11], Ω(t) is the dissipation function as de�ned
for the Evans-Searles Fluctuation Theorem [10], Γ (t) is the phase space vector, H0 is the
internal energy, kBTΛ gives the rate that heat is lost from the system to the thermostat or
reservoir [11] and Λ is the phase space compression factor [9]. Eq. 2 is de�ned for arbitrary
�eld strengths and in the linear response regime it gives the entropy production,

−〈JV · Fe (t)〉/T = kB 〈Ω(t)〉 =

∫

V

drσ (r, t) + O
(
F 4

e

)
, (3)

where 〈...〉 denotes an ensemble average.
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The JE has been shown [8] and proved [12] for the time reversible thermostatted dynamics
we employ below. It has also been experimentally veri�ed [13, 14]. The JE gives the change in
Helmholtz free energy A for a system which has undergone a nonequilibrium process starting
from an initial (t = 0) equilibrium distribution of phases f1(Γ, 0) ∝ exp[−βH(Γ, λ(0))] and
initial Hamiltonian H(Γ, λ(0)) to a �nal Hamiltonian H(Γ, λ(τ)) at t = τ and then relaxed
to a new equilibrium. The dynamical proof [12] requires that the dynamical pathway Γ(t)

be such that the distribution of phases at t = τ can subsequently relax to a �nal canonical
distribution at t = ∞, f∞(Γ,∞) ∝ exp[−βH(Γ, λ(τ))]. The parametric transformation of
the Hamiltonian is complete at a �nite time t = τ , by which time the system is not expected
to have fully relaxed to the new equilibrium. JE states,

〈exp (−βWτ )〉 = exp (−β∆A) . (4)

where Wτ =
∫ τ

0
dsẆ (s) is the Jarzynski work function and Ẇ (t) ≡ [ d

dt
H0(Γ(t), λ(t))] −

kBTΛ(Γ(t)), [12]. Although H0(Γ(τ), λ(τ)) 6= H0(Γ(∞), λ(τ)) it is clear that, Wτ = W∞.
The proof of the JE [12] requires that the two systems be connected by a path 1 → 2 and

its inverse path 2 → 1. The proof does not put restrictions on the time dependence of the
path. The parametric change in the Hamiltonian from λ(0) → λ(τ) may in addition contain
work due to the system being driven by a dissipative external �eld [12]. If the work is solely
due to a dissipative external �eld (λ̇ = 0 ∀ t) then the rate of work Ẇ will be the same as
that given by Eq. 2 (ie Ẇ = kBTΩ).

The JE allows a �rst principles proof of the Second Law Inequality (SLI) from the equa-
tions of motion. By combining Eq. 4 with the mathematical identity exp(x) > 1 + x we
have,

e−β∆A = 〈e−β(Wτ−〈Wτ 〉)〉e−β〈Wτ 〉 ≥ e−β〈Wτ 〉. (5)

Noting that ex is a monotonically increasing function we derive the Clausius Inequality

〈Wτ 〉 ≥ ∆A, ∀ τ ≥ 0. (6)

If the system of interest is a �uid and if the transformation involves, say, a shearing de-
formation or perhaps the translation of one particle through a �xed distance, then clearly
∆A = 0, we may treat the �eld as external λ̇ = 0, and thus, by Eq. 2, Wτ = kBT Ω̄ττ =

− ∫ τ

0
dsJ (s) V · Fe (s) where Ω̄τ ≡ 1

τ

∫ τ

0
ds Ω(s). The SLI then follows,
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〈
Ω̄τ

〉
= − 1

τkBT

∫ τ

0

ds 〈J (s) V · Fe (s)〉 ≥ 0, ∀ τ ≥ 0, ∀ Fe(s) (7)

which forms a generalization of Eq. 1 that is valid at arbitrary �eld strengths and derived
from the equations of motion. A signi�cant di�erence between Eq. 7 & Eq. 1 is that Eq.
1 applies to instantaneous values whereas Eq. 7 applies to time averages of the entropy
production starting at t = 0 from an initial canonical distribution. We note that Eq. 7 has
previously been derived under a more restrictive set of conditions from the Evans Searles
Fluctuation Theorem [15].

We decided to test this prediction using nonequilibrium molecular dynamics simulations
of shear �ow in a �uid. We consider the case of sinusoidal shear applied to a viscoelastic
�uid. We employ the Lees-Edwards (sliding brick) periodic boundary conditions along with
the so-called SLLOD equations of motion for planar Couette �ow [9],

q̇i =
pi

m
+ iγ̇(t)qyi (8)

ṗi = Fi − iγ̇(t)pyi − αpi

where γ̇ ≡ ∂ux/∂y is the strain rate, pi is the peculiar momentum taken relative to the
streaming velocity ux(y) = iγ̇(t)y and α(t) is a Gaussian thermostat multiplier which holds
the kinetic temperature �xed [9]. For Couette �ow with a constant strain rate the SLLOD
equations of motion are known to give an exact description of steady adiabatic planar Cou-
ette �ow for arbitrary values of the strain rate [9]. For time dependent shear �ows it is
known that the SLLOD equations give an exact description of such �ows in the linear re-
sponse regime for both adiabatic and thermostatted �ows [9]. For high shear, oscillatory
�ows it is not known whether SLLOD is exact but it is widely assumed this is so.

To apply the SLI, Eq. 7, to the equations of motion Eq. 8, we note that the equilibrium
Hamiltonian or internal energy is H0 =

∑
p2

i /2m + Φ where Φ is the total interparticle pair
potential. The dissipation function, which in the linear response regime gives the entropy
production Eq. 3, may then be obtained from,

kBTΩ (t) = −γ̇V Pxy = −γ̇
( N∑

i=1

pxipyi

m
−

N∑
i<j

Fxijqyij

)
, (9)

where N is the number of particles, Pxy is the xy element of the pressure tensor, Fxij

is the x component of the pairwise additive force on particle i due to particle j, qyij is
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the y component of the vector connecting their centers and pxi is the x component of the
momentum of particle i. So in this case for JV Fe we have J = Pxy and Fe = γ̇.

Simulations of oscillatory shear were carried out on a �uid in three dimensions using
the pair potential φij = ε[(σ/rij)

12 − (σ/rij)
6 + 0.25] ∀ rij < 21/6, with the volume and

temperature held constant. The equations of motion were solved using a fourth order Runge-
Kutta algorithm with a time step 4t = 0.001. The number density is ρ = Nσ3/V = 0.95,
N = 108, kBT = ε and the time unit is

√
mσ2/ε throughout. For times t ≤ 0 the system

was in equilibrium. The initial equilibrium con�gurations were obtained by sampling an
equilibrium trajectory, at time intervals of 5, which was generated by solving Eq. 8 with
γ̇ = 0. Starting from these initial con�gurations a total of 5×105 nonequilibrium oscillatory
Couette �ow trajectories were computed: γ̇(t) = γ̇0 sin(ωt), t > 0 with ω = 4π and
γ̇0 = 0.2. The duration of the nonequilibrium trajectories was 2.

In Fig. 1 the dissipation function, 〈Ω(t)〉 in units of kB (which was calculated by ensemble
averaging all of the nonequilibrium trajectories) is plotted as a function of time along with
the ensemble averaged rate of heat absorbed by the thermostat, Q̇(t) = −3NkBT 〈α(t)〉 =

kBT 〈Λ〉 in units of ε. Also shown is the strain rate, 10× γ̇(t). The initial transients in the
response decay very rapidly. It is clear that the response of the �uid is viscoelastic: there
is a phase lag between Pxy(t) and γ̇(t) due to the relatively high frequency ω. This shows
that the dissipation function (or at weak �elds, equivalently, the entropy production Eq. 3)
is negative within certain intervals of time even though the system's response is linear. This
e�ect is not due to the amplitude of the shear rate γ̇0 being large. This is clearly at odds
with the traditional view from irreversible thermodynamics. In contrast Eq. 7 is satis�ed
at all times as may be seen in Fig. 2 where the integral

〈
Ω̄t

〉
t and the time average

〈
Ω̄t

〉

are plotted as a function of time t.
In summary we have shown the assertion of linear irreversible thermodynamics that

the instantaneous entropy production is always nonnegative is incorrect for the case of
time dependent viscoelastic �uids even if they are in the linear response regime close to
equilibrium. The Second Law Inequality Eq. 7 derived from the Jarzynski Equality states
that the time integral (starting from t = 0) of the ensemble averaged dissipation function
cannot be negative for arbitrary integration times and arbitrary �eld strengths (of course in
the weak �eld limit the dissipation function is equal to the entropy production Eq. 3). This
inequality requires that the Helmholtz free energy of the corresponding equilibrium system
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does not change. For planar shear this is a necessary condition for the �uid state, which by
de�nition cannot support a constant stress. For a solid, undergoing oscillatory nonplastic
deformation, the equilibrium free energy would depend on the deformation and the Clausius
Inequality Eq. 6 will need to be used rather than the Second Law Inequality Eq. 7.

Lastly we note that the Second Law Inequality is a macroscopic consequence of the
Jarzynski Equality and of the Evans Searles Fluctuation Theorem [15]. All previously de-
rived consequences of the JE and the Fluctuation Theorem were microscopic in nature. The
Second Law Inequality in the form Eq. 7, has important consequences in applications such
as atmospheric physics where the principle of maximum entropy in nonequilibrium states
has been employed [16].
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Figure 1: The response of the system to the oscillatory shear, in the linear response regime, which

began at time t = 0 following Eq. 8. The solid line is the entropy production, 〈Ω(t)〉 = −γ̇Pxy(t)V/ε.

The dashed line is the instantaneous rate of heat absorbed by the thermostat 〈dQ/dt〉 /ε. The

dotted line gives the strain rate γ̇(t) multiplied by a factor of 10. The data for the heat exchange

is considerably more noisy than the other data. Clearly 〈Ω(t)〉 is at times negative.

Figure 2: The dashed line is the integral,
〈
Ω̄t

〉
t, which is nonmonotonically increasing but always

nonnegative. The solid line (black) is the time average
〈
Ω̄t

〉
which is also always nonnegative.
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